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The mathematical objects currently known as Lagrangian

descriptors [1, 2] have shown their usefulness in different

applications to the dynamics of non-linear systems. Partic-

ularly, their usefulness has also been shown in the study of

non-linear molecular systems, as in the case of the LiCN

molecule [3, 4].

For a mechanical system with N/2 degrees of freedom,

the Lagrangian descriptors are defined as follows,

M±(z0; p, τ) = ±

N∑
k=1

∫ ±τ

0

|żk(t)|
p dt, (1)

where z = (z1, . . . , zN ) is the vector formed by the N/2 po-

sition variables and their corresponding conjugate momenta,

such that, Lagrangian descriptors are a function which de-

pends on the initial condition z0 and two fixed parame-

ters, the exponent p (0 < p < 1) and the integration time

τ (τ > 0). For the exponent, we have taken the value

p = 0.4, which has been shown as adequate for other molec-

ular systems [3, 4], whilst for the integration time, the value

τ = 437.5 fs has been used, which corresponds to the in-

verse of the stability exponent of the periodic orbit of inter-

est. Notice that the overall Lagrangian descriptors M , as are

defined in the literature [1, 2], are given by the sum of back-

ward M− and forward M+ expressions in Eq. (1), namely,

M = M− +M+.

In this contribution, we present the results obtained in the

application of the Lagrangian descriptors to the dynamics of

a remarkable system: the highly non-linear KCN molecular

system. By using a suitable two-dimensional model (con-

sidering the motion of the K atom around the CN group),

based on ab initio calculations for the potential energy func-

tion [5], it has been shown the emerging of above saddle-

point regions of order in the sea of chaos [6]. Therefore,

we have calculated the Lagrangian descriptors, and also the

invariant manifolds, corresponding to the hyperbolic fixed

point that appears on this interesting saddle-point.

First, in order to verify the optimum value of the inte-

gration time, given by the inverse of the stability exponent

of the periodic orbit, we will show the Lagrangian descrip-

tors calculated with different values of the integration time,

above and below the optimum value.

Next, we will present the (optimal time) Lagrangian de-

scriptors, as well as the invariant manifolds, both repre-

sented in a suitable Poincaré surface of section, correspond-

ing to the hyperbolic fixed point of interest, showing a clear

correspondence between both representations (see Fig. 1).

In both cases, Lagrangian descriptors and invariant mani-

folds, we can observe the appearance of intriguing loops.

We will study in detail the first discontinuity that leads to a

one of these closed curves.

Last, in order to understand this interesting behavior, we

will present calculations in the three-dimensional phase-

Fig. 1. Lagrangian descriptors computed forward (a) and

backward (c) in time, and stable (b) and unstable (d) invari-

ant manifolds, all of them represented in a suitable Poincaré

surface of section (ϑ, Pϑ), corresponding to a hyperbolic

fixed point located at (ϑ, Pϑ) = (π, 0), with total energy

E = 1300 cm−1. Note the loops appearing in this Poincaré

representation of the invariant manifolds.

space, beyond the dimension of the Poincaré surface of sec-

tion, showing that the appearance of the closed curves is due

to the highly non-linear dynamics of the system. This highly

non-linear dynamics causes the twisting and wrinkling of the

two-dimensional invariant manifolds, such that, in the cross-

ing with the Poincaré surface, discontinuities and loops ap-

pear.
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