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Abrupt and explosive phase transitions are one of the most

important results in Statistical Physics and in Complex Net-

works of the last few decades. They are found when the in-

teractions between the elements of the network are coupled

with their structural properties. Furthermore, these tran-

sitions exhibit drastic and unanticipated consequences that

make them an emerging paradigm for modeling real-world

systems ranging from social networks or epidemics to nan-

otubes [1].

The examples more commonly studied are the Explosive

Percolation (EP) [2] and the Explosive Synchronization (ES)

[3] transition. For both these transitions, the explosive or

abrupt nature of the transitions arises from the delay of their

critical point. This delay is achieved by introducing corre-

lations between the links of the network and functions of its

local structure. Its important to mention that, without this

delay of the critical point, both these transitions are smooth

and second order transitions.

Our objective in this work is the development and deriva-

tion of a rule or set of rules that allow a system to display an

explosive behavior in the percolation transition as well as in

the synchronization transition.

With this aim in mind, let us consider a system of N non-

identical Kuramoto oscillators running on top of a network.

The equations of motion are given by

θ̇i = ωi + λ

N
∑

j=1

Aij · sin(θi − θj), (1)

where θi is the phase of the i–th oscillator, ωi is its natu-

ral frequency and is given by a distribution g(ω) such that

〈ω〉 = 0. Aij are the entries of the adjacency matrix A,

capturing the interactions between oscillators and λ is the

strength of their coupling. The macroscopic behavior of the

system is captured by the modulus of the Kuramoto order

parameter:
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and r = 〈r(t)〉, (2)

which measures the degree of synchronization of the system

and is bounded between zero and one.

Now, with a series of assumptions such as: (i) the system

tends to maximize the synchronization, (ii) we have limited

information, i.e. the process is decentralized, (iii) the perco-

lation is adiabatic compared to the synchronization and (iv)

the system is closed to the synchronization attractor; we are

able to derivate a rule for the order in which the links of the

network have to be added (removed) that delays the critical

point of the percolation and the synchronization transition.

This rule is adding (removing) the link (p, q) that maximizes

the magnitude

∆rp,q =
±1

λ2N

(

ωp

kp
−

ωq

kq

)(

ωp

k2p
−

ωq

k2q

)

. (3)

As we observe in Fig. 1 this rule effectively delays the crit-

ical points of both transition, allowing them to display hys-

teresis.
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Fig. 1. Percolation and synchronization transitions for a uni-

form distribution of natural frequencies, g(ω). Top: Abrupt

percolation transition of our system. It can be seen how the

critical points of both the forward and backward process are

delayed, compared to the random process. Bottom: Explo-

sive synchronization transition of our system. It can be ap-

preciated how the transition, well known to be of second or-

der without any rule, now displays a discontinuity in which

the parameter r jumps from r ≈ 0 to r ≈ 1 for the forward

process and vice versa for the backward process. Black lines

correspond to the theoritical predictions for the synchroniza-

tion thresholds.
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