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The quantum vacuum on a static space-time is nothing

but the ground state of a certain Hamiltonian. Therefore, it

is subject to quantum fluctuations which help minimize the

energy. Yet, these fluctuations are clamped near the bound-

aries, giving rise to the celebrated Casimir effect [1, 2].

For fields subject to conformal invariance, the Casimir

force is associated to the conformal anomaly. Using open

boundary conditions on a (1 + 1)D system with size N , the

energy of the ground state can be proved to be [3]

E(N) = ǫ1N + ǫ0 +
cv

6N
+O(N−2), (1)

with ǫ0 and ǫ1 constants, v standing for the Fermi velocity,

and c is the central charge. Let us also remark the fact that

the sign of the force can be changed from attractive to repul-

sive by suitable choice of the boundary conditions.

We characterize Casimir forces for the Dirac vacuum

on free-fermionic chains with smoothly varying hopping

amplitudes, which can be seen to correspond to (1+1)D

curved space-times with a static metric of optical type in

the thermodinamic limit. The metrics considered are anti-

de Sitter (Rainbow system), Rindler, oscillatory and ran-

dom [4]. Thus, our main objective is to characterize how

Eq. (1) changes in presence of a static graviational field for

fermionic (1+1)D systems.

Let us consider a fermionic chain of N sites, whose dy-

namics is described by the Hamiltonian

HN (J) = −
N−1
∑

m=1

Jmc†mcm+1 + h.c., (2)

where J = {Jm}N−1

m=1 are the hopping amplitudes, Jm ∈ R+

referring to the link between sites m and m + 1, and c†m,

cm+1 are the fermionic creation and annihilation operators

on sites m and m+ 1, respectively. Hamiltonian (2), which

is quadratic in the fermionic operators, is also called free

fermion Hamiltonian and is solvable in terms of single-body

sates. In the thermodynamic limit, if the J are smooth, Eq.

(2) corresponds to the Dirac field on a metric of the form [5]

ds2 = −J2(x)dt2 + dx2. (3)

Moreover, when we move away from half-filling a new

phenomena is observed. A depletion region appears to arise

in the fermionic density and in next-neighbours correlators

as well.

We have considered the continuum limit of Hamiltonian

(2) with

Ψ = ΨL +ΨR, (4)

cm =
√
a
(

eikF xΨL(x) + e−ikF xΨR(x)
)

, (5)

where kF is the Fermi momenta.
Expanding the fields, ΨL(x) and ΨR(x), to second or-

der we end up with a new Hamiltonian which equations of

motion give rise to a Schrödinger-like expression where an

effective potential could explain the depletion phenomena.

It is important to say that away from half filling the theory is

not conformal.
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Fig. 1. Fermionic density for different filling-factors with

N = 400 sites. Four metrics have been considered:

Minkowski, Rindler, Rainbow and Sine.
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