Casimir forces on curved backgrounds
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The quantum vacuum on a static space-time is nothing
but the ground state of a certain Hamiltonian. Therefore, it
is subject to quantum fluctuations which help minimize the
energy. Yet, these fluctuations are clamped near the bound-
aries, giving rise to the celebrated Casimir effect [1, 2].

For fields subject to conformal invariance, the Casimir
force is associated to the conformal anomaly. Using open
boundary conditions on a (1 + 1) D system with size IV, the
energy of the ground state can be proved to be [3]

E(N)=e N + e+ % L O(N7?), (1

with €y and €; constants, v standing for the Fermi velocity,
and c is the central charge. Let us also remark the fact that
the sign of the force can be changed from attractive to repul-
sive by suitable choice of the boundary conditions.

We characterize Casimir forces for the Dirac vacuum
on free-fermionic chains with smoothly varying hopping
amplitudes, which can be seen to correspond to (1+1)D
curved space-times with a static metric of optical type in
the thermodinamic limit. The metrics considered are anti-
de Sitter (Rainbow system), Rindler, oscillatory and ran-
dom [4]. Thus, our main objective is to characterize how
Eq. (1) changes in presence of a static graviational field for
fermionic (1+1)D systems.

Let us consider a fermionic chain of NV sites, whose dy-
namics is described by the Hamiltonian
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where J = {J,,, }N_1 are the hopping amplitudes, J,, € R*
referring to the link between sites m and m + 1, and cjn,
Cm+1 are the fermionic creation and annihilation operators
on sites m and m + 1, respectively. Hamiltonian (2), which
is quadratic in the fermionic operators, is also called free
fermion Hamiltonian and is solvable in terms of single-body
sates. In the thermodynamic limit, if the J are smooth, Eq.

(2) corresponds to the Dirac field on a metric of the form [5]

ds® = —J?(z)dt* + dz?. 3)

Moreover, when we move away from half-filling a new
phenomena is observed. A depletion region appears to arise
in the fermionic density and in next-neighbours correlators
as well.

We have considered the continuum limit of Hamiltonian
(2) with

U=y, 4+ Ug, “)
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where kf is the Fermi momenta.
Expanding the fields, ¥ (z) and ¥ (), to second or-

der we end up with a new Hamiltonian which equations of
motion give rise to a Schrédinger-like expression where an
effective potential could explain the depletion phenomena.
It is important to say that away from half filling the theory is
not conformal.
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Fig. 1. Fermionic density for different filling-factors with
N = 400 sites. Four metrics have been considered:
Minkowski, Rindler, Rainbow and Sine.
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