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The interplay between excitation (E) and inhibition (I) is

a prominent mechanism of rhythmogenesis in neuronal net-

works [1]. Theoretical studies have shown that such E-I

based rhythms —often referred to as Pyramidal-Interneuron

Gamma (PING) oscillations— naturally emerge from recip-

rocal interactions between populations of excitatory and in-

hibitory neurons, when inhibition is delayed (or slower) rel-

ative to excitation [2]. In addition, recent theoretical results

demonstrate that such PING rhythms can be thoroughly an-

alyzed using a simple extension of the Kuramoto model of

coupled oscillators [3].

Previous theoretical work has been made under the as-

sumption that inhibitory cells have Type 1 phase response

curve (PRC), that is, cells always advance their phase in

response to excitatory pulses, see e.g. [1]. However, ex-

perimental studies show that inhibitory neurons often delay

their phase in response to excitatory pulses as well, typically

when the stimulus comes at the beginning of their cycle [4].

Given that PRC type critically influences synchronization,

the features of PING oscillations may be altered in the pres-

ence of inhibitory neurons with PRC of Type 2.

Here we theoretically investigate the effects of the PRC-

Type in the synchronization of an excitatory and an in-

hibitory neuron. Neurons are modeled using a variant of

the Kuramoto model originally obtained in [5]. Though the

Kuramoto model is ideally suited to theoretically investigate

synchronization, thus far it has not been applied to inves-

tigate PING-mediated synchronization between oscillators

with different PRC-Type. The Kuramoto model descriving

the evolution of the phases of a pair of coupled (synaptic

strengths: KE,I ) excitatory and inhibitory neurons is

θ̇E = ωE −KE sinβE −KE sin(θI − θE − βE),

θ̇I = ωI +KI sinβI +KI sin(θE − θI − βI),

where ωE,I are the natural frequencies of the neurons, and

parameters βE,I control the shape of the PRC of each neu-

ron. Specifically, for βE,I = π/2 the PRC is of Type 1,

while βE,I 6= π/2 corresponds to different types of Type 2

PRCs. The simplicity of the Kuramoto model allows one to

write the two-dimensional dynamical equations as a single

equation for the phase difference, φ = θE − θI , as

φ̇ = ∆ω + 2K sin β̄
[
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∆β

2
)− cos

∆β

2

]

,

where we assumed symmetric coupling K = KE = KI ,

and defined the new parameters ∆ω = ωE−ωI , β̄ = (βE+
βI)/2, and ∆β = βE − βI . The stable fixed points of this

equation are created in two Saddle-Node (SN) bifurcations,

and they correspond to synchronous solutions. Consistent

with biophysical data, we consider that the E neuron is Type

1, βE = π/2, hereafter. In Fig. 1 we show the (∆ω, βI)
phase diagram, where the SN boundaries (thick blue lines)

enclose the synchronization region (shaded). Remarkably,

when the PRC of the I neuron deviates from π/2, the E-I

network is able to synchronize even when the I neuron is

faster than the E neuron —i.e. for ∆ω < 0. Moreover, if

βI ∈ (−π/2, π/2), the I neuron can precede the E neuron

(φ∗ < 0, see red shaded region in Fig. 1).

Our findings demonstrate that E-I based oscillations

broadly considered in computational neurosciences can be

investigated in the powerful theoretical framework of the

Kuramoto model. This allows for a systematic exploration

of the effects of biologically realistic Type-2 PRCs in neu-

ronal synchronization. Our preliminary results already in-

dicate that broadly accepted features of EI-based rhythms

may be strongly altered if inhibitory neurons have Type-2

PRCs. For example, the oscillation cycle does not always

begin with a boost of (fast) excitatory activity, followed by

(slow/delayed) inhibition, but this can be reversed when in-

hibitory neurons have PRCs with βI ∈ (−π/2, π/2).

−π/2 0 π/2 π 3π/2

βI

-1

0

1

2

3

4

∆
ω

φ ∗ > 0

φ ∗ < 0
φ ∗ >π

SN

SN

Fig. 1. Phase diagram of the Kuramoto model for a pair sym-

metrically coupled excitatory and inhibitory neurons. The

shaded area corresponds to the synchronization region.
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