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Recently, network geometry [1] has become a hot re-

search field in network science. Latent geometric spaces

underlying real complex networks provides the simplest ex-

planation to many of their observed topological properties,

including degree distribution, smallworldness, clustering,

community structure, etc. The key topological property

within the geometric framework is clustering—the tendency

of the network to form cycles of length three—due to the tri-

angle inequality in the latent geometry. Interestingly, in ge-

ometric models clustering undergoes a phase transition be-

tween a geometric phase with finite clustering coefficient in

the thermodynamic limit and a non-geometric phase where

the clustering coefficient is zero.

Despite the fact that the transition was known from our

previous works [2], its nature was completely unclear. In

this work [3], we analyze this transition in detail and show

that it has a quite peculiar behavior. Upon mapping the net-

work ensemble to a system of noninteracting fermions (cor-

responding to the links in the network) at temperature β−1,

we show analytically and confirm numerically that

1. there is no symmetry breaking at the critical point βc. In

fact, the transition is a topological one between two differ-

ent orderings of chordless cycles (which can be regarded

as topological defects) in the network. It is then similar

to other topological phase transitions like the BKT transi-

tion [4, 5].

2. However, unlike in the BKT transition, both the free en-

ergy and entropy of the system diverge at the critical point

in the thermodynamic limit. This is a very exotic behav-

ior as in standard systems entropy only diverges at infinite

temperature.

3. The scaling behavior of clustering at the transition is

anomalous. Right at the critical point clustering decays

logarithmically with the system size, and it decays as a

power of the system size below the critical point. This is

at odds with standard continuous phase transitions, where

one observes power law decay at the critical point and

faster decay below the critical point.

4. This scaling suggests that the effective size of the system

is not given by the number of nodes N but by its loga-

rithm lnN . We then propose a finite size scaling ansatz

with lnN instead of N that is confirmed by both the di-

rect numerical integration as numerical simulation of the

problem (Fig. 1).
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Fig. 1. Data collapse based on the finite size scaling ansatz

C(β,N) = [lnN ]
−

η

ν f((β−βc)[lnN ]
1

ν ) for heterogeneous

networks with γ = 2.7 (top row) and homogeneous net-

works (bottom row). Left column correspond to numerical

simulations with sizes in the range N ∈ (5 × 102, 105),
whereas the right column is obtained from numerical inte-

gration in the range N ∈ (5× 105, 108).

We also show that real networks with temperatures around

and below the critical point are widespread, and therefore

justify the practical importance of these findings.
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