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The transition from incoherence to collective synchro-

nization is a pivotal phenomenon in a wide variety of sys-

tems, from physical to biological. Seeking to understanding

the synchronization transition, in 1975 Kuramoto derived his

famous model [1]. Applying a perturbative technique (phase

reduction) to an ensemble of globally coupled Stuart-Landau

oscillators, he derived the first analytically tractable model

able to describe the transition to collective synchrony. De-

spite its great success, the Kuramoto model is not the end

of the story. The complex dynamics present in the ensem-

ble of Stuart-Landau oscillators, Fig. 1a), is not captured by

the Kuramoto model, Fig. 1b), pointing to the existence of a

more complex transition to collective synchronization [2, 3].

In this work we extend the Kuramoto model to shed light

on the rich dynamics of the ensemble of Stuart-Landau os-

cillators. Emulating Kuramoto’s idea, we apply phase re-

duction to second order, obtaining the “enlarged Kuramoto

model”. The inclusion of new correction terms with non-

pairwise interactions give rise to qualitative (in addition to

quantitative) differences, Fig. 1 c).

Although the enlarged Kuramoto model is simpler than

the ensemble of Stuart-Landau oscillators, it is still difficult

to determine the different regimes due to finite size fluctu-

ations. In order to characterize the series of bifurcation oc-

curring in the system, we develop a numerical method that

allows an efficient simulation of ensembles of phase oscil-

lators in the thermodynamic limit. This method is based on

the decomposition in Fourier-Hermite modes of the oscil-

lator density. Truncating the number of modes, we obtain

a finite dimensional system used to simulate the thermody-

namic limit of the enlarged Kuramoto model.

The use of Fourier-Hermite modes allows us to analyze

the rich dynamics of the model, confirming the existence

of a secondary instability and collective chaos in the tran-

sition to synchrony. The modes decomposition is applica-

ble to any ensemble of heterogeneous phase oscillators, fa-

cilitating and promoting studies of more complicated phase

models, such as the ones with higher-order interactions.
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Fig. 1. Phase diagram of a) the ensemble of Stuart-Landau

oscillators, b) the Kuramoto model, c) the enlarged Ku-

ramoto model. In yellow and white regions Uniform In-

coherence State and Partial Synchrony are stable respec-

tively. The shaded gray region represents the parameters

where complex dynamics are stable. Color lines are the tran-

sition between different regimes. The rich phase diagram of

panel a) is only captured by the enlarged Kuramoto model

depicted in panel c).
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