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Ecological and evolutionary dynamics have been histori-

cally regarded as unfolding at broadly separated timescales.

However, these two types of processes are nowadays well-

documented to intersperse much more tightly than tradition-

ally assumed, especially in communities of microorganisms.

Advancing the development of mathematical and computa-

tional approaches to shed novel light onto eco-evolutionary

problems is a challenge of utmost relevance.

With this motivation in mind, here we scrutinize recent

experimental results showing evidence of rapid evolution of

tolerance by lag in bacterial populations that are periodically

exposed to antibiotic stress in laboratory conditions. In par-

ticular, the distribution of single-cell lag timesi.e., the times

that individual bacteria from the community remain in a dor-

mant state to cope with stressevolves its average value to

approximately fit the antibiotic-exposure time. Moreover,

the distribution develops right-skewed heavy tails, reveal-

ing the presence of individuals with anomalously large lag

times. Here, we develop a Markov individual-based stochas-

tic model for phenotypic adaptation that mimicks the actual

demographic processes of the experimental setup. Individ-

uals are characterized by a single phenotypic trait: their in-

trinsic lag time, which is transmitted with variation to the

progeny. The model –in a version in which the amplitude

of phenotypic variations grows with the parents lag time– is

able to reproduce quite well the key empirical observations

Mathematically models such as our are described by

a Master equation ruling the time evolution of the joint

probability-distribution functions for the whole set of all par-

ticles. However, as it is often the case for such many-particle

Master equations, it is hard to handle analytically in an ex-

act way. Thus, in order to gain quantitative understanding

beyond purely computational analyses, here we develop an

approximationwhich becomes exact in the limit of infinitely

large population sizes, that allows us to derive a macro-

scopic (or mean-field) description of the stochastic model

in terms of the probability density of finding an individual at

any given phenotypic state, (i.e. the one-particle probability

density):
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this equation is a generalization of the celebrated

continuous-time Crow-Kimura equation of population ge-

netics, also called selection-mutation equation. In partic-

ular, notice that the dynamics of the probability density is

exposed to the combined action of the process of selection

(first term in previous equation) and mutation, as specified

by the drifts (the second and third line). This type of equa-

tions, combining replicator dynamics with Fokker-Planck

type of terms.

Even if the model does not account for all the biologi-

cal mechanisms (e.g., genetic changes) in a detailed wayi.e.,

it is a phenomenological one it sheds light onto the eco-

evolutionary dynamics of the problem and can be help-

ful to design strategies to hinder the emergence of toler-

ance in bacterial communities. From a broader perspec-

tive, this work represents a benchmark for the mathemati-

cal framework designed to tackle much more general eco-

evolutionary problems, thus paving the road to further re-

search avenues.
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Fig. 1. Sketch of the main ingredients of the individual-

based stochastic model. Each individual bacterium (i) is

characterized by its phenotypic state, lag time τi and expe-

riences demographic processes. (A) In the presence of an-

tibiotics, bacteria can stochastically switch between the dor-

mant and the growing state (at transition rates s and 1/τi,
respectively); growing individuals can also attempt repro-

duction (at a “birth” rate b) and be immediately killed by

the action of antibiotics (as bactericidal antibiotics usually

act during duplication attempts). (B) In the fresh medium,

dormant bacteria can wake up at a rate 1/τi, that depends

on their intrinsic (phenotypic) lag time; on the other hand,

growing cells can reproduce asexually by duplication; the

resulting offspring inherit the characteristic time scale with

some variation, as specified by a function β. (C) Two possi-

ble types of variation functions β: in the additive case (top),

the standard deviation is constant, i.e. independent of the

initial state τi, while in the multiplicative case (bottom) the

standard deviation is assumed to grow linearly with the par-

ent’s lag time τi. (D) Sketch of the environmental variation,

alternating periodically between antibiotic exposure (time

Ta) and a fresh medium (Tmax − Ta).


