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We study the effects of heterogeneous timing interactions

in processes of complex contagion, focusing on the thresh-

old model [1] with exogenous and endogenous aging. For

the threshold model, the binary state variable indicates if ei-

ther the agent has adopted a technology or not. Endogenous

aging is considered as the property of agents in the system

to be less prone to change state the longer they have been

in the current state. On the other hand, in exogenous aging,

memory is lost after failed attempts to change state [2].

In both cases, numerical simulations show that aging

slows the cascade dynamics towards the fully adopted state.

The exponential increase of the fraction of adopted agents

ρ(t) exhibited by the original threshold model is replaced by

a stretched exponential or power-law increase when aging

mechanism is exogenous or endogenous, respectively (see

Fig.1). This behaviour is universal for different system sizes,

networks and values of the control parameters (average de-

gree z and threshold T ).

The memory dependent dynamics induced by aging can-

not be treated with standard methods for binary-state dy-

namics in networks [3]. We derive an approximate mas-

ter equation (AME) reducing the non-Markovian dynam-

ics to Markovian by enlarging the number of variables [4].

Our AME describe binary state dynamics with timing in-

teractions for any network generated with the configuration

model. For the threshold model with aging, the numerically

integrated solutions give a good agreement with numerical

simulations (Fig. 1).
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Fig. 1. Cascade dynamics and fall to the adopted state ρ = 1
of the Watts threshold model (a) and the versions with ex-

ogenous (b) and endogenous (c) aging effects. The under-

lying network is a 3-regular random graph and the homo-

geneous threshold is T = 0.2. The exponent values are

α ≃ 1.0, β ≃ 1.14, γ ≃ 0.38 and δ ≃ 1.0. AME solu-

tions (solid lines) describe accurately the numerical results.

Fig. 2. Exponent δ dependence on the average degree z

(T = 0.1) (left) and the T (right) for the threshold model

with endogenous aging. Different markers indicate results

from numerical simulations with different topology: red

triangles indicates an Erds-Renyi (ER), blue circles indi-

cate a Random Regular (RR) and green squares indicate a

Barabasi-Albert (BA) graphs. In (b), average degree is fixed

z = 5 for ER and RR, and z = 8 for the BA. Predicted

values by Eq.1 (solid lines) fit the results for each topology.

System size is fixed at N = 160000.

We reduce the AME for the threshold model with aging

to a set of two coupled differential equations. The equa-

tions are linearized to find an analytical solution of the frac-

tion of adopted agents ρ(t). The exponential increase for the

original model and the power law dynamics for the version

with endogenous aging are predicted. In fact, the exponent

is found to coincide:

δ(Z, T ) = α(z, T ) =

1/T∑

k=0

k(k − 1)

z
pk − 1. (1)

This exponent dependence is shown to be different ac-

cording to the degree distribution of the underlying network

pk. Values computed from numerical simulations are in

good agreement with analytical predictions (see Fig.2).
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