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The one-dimensional (1d) bead-spring model, or 1d

Rouse model, consists of N monomers (beads) subject to

thermal fluctuations and connected by massless springs.

Monomers can thus be viewed as impenetrable random

walkers (RWs) interacting through a nearest-neighbour har-

monic potential. Here we consider a similar model in which

the beads are connected by strings rather than by springs.

Therefore, our model can be viewed as a modified 1d Rouse

model where the harmonic potential is replaced by an ex-

tremely soft-hard potential: the square well. Note that the

beads (RWs) can diffuse freely in 1d, except for the fact that

they cannot cross nor separate from one another beyond a

certain distance ∆ (∆ is the string length or, equivalently,

the width of the square-well). We are primarily interested in

studying how this system relaxes to its equilibrium state.

It should be noted that our model progressively ap-

proaches a standard single-file model (with finite N ) the

larger ∆ or the smaller t becomes; in fact, for ∆2/(4Dt) →
∞ (where D is the RW diffusion constant), our model is just

the single file model .

In order to obtain an approximate expression for the N -

particle positional pdf, we make the following factorization

ansatz:

p(x1, . . . , xN , t; ∆) = A

N∏

i=1

G(xi, t)

N−1∏

i=1

R(xi+1 − xi,∆)

where A is the normalization constant, G(x, t|x0, t = 0)
denotes the free-particle Green function (gaussian distribu-

tion) and R(x,∆) is the rectangular (hat) function of width

∆: R(x,∆) = 1 for 0 < x < ∆ and R(x,∆) = 0 else-

where. The exclusion effects arising from the square well

potential are accounted for by the hat function. For ∆ → ∞,

this ansatz becomes identical with the one used by Aslangul

[1] to study the single-file model with a finite RW number

N . Reduction of p(x1, . . . , xN , t; ∆) by repeated integra-

tion yields the pdf for the position xi of the i-th RW. It turns

out that it is possible to find approximate expressions for

such pdfs and for the corresponding moments as power se-

ries of δ ≡ ∆/(4Dt)1/2. We subsequently compare the dy-

namics of the beads predicted by our model (and their corre-

sponding collective “polymer” dynamics) with the outcome

of MC simulations. Our simulations show that, starting from

a fully compressed polymer or a fully stretched polymer, the

relaxation of the polymer length L is well described by a

Kohlrausch-Williams-Watts (KWW) law for short and in-

termediate times, at less for not too large values of N (see

Fig. 1). However, for very long times, our ansatz predicts

that the L-relaxation to its equilibrium state follows the in-

verse power law 1/t, which is in full contrast with the expo-

nential decay exhibited by the 3d Rouse model. On the other

hand, once the system has attained the equilibrium state, the

diffusion constant of each bead (and thus of the polymer as

a whole) can be shown to scale as 1/N , as it is also the case

in the 3d Rouse model [2]. It is possible to estimate the

full equilibrium pdf for the polymer length L by counting

the number of microstates compatible with the equilibrium

state. We have also found that the bead-string polymer is

Hookean in the sense that the force required to change the

equilibrium value of L by an amount of x is proportional to

x. The elastic constant turns out to be proportional to ∆ and,

as in the 3d Rouse model, inversely proportional to N .
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Fig. 1. Relaxation of the scaled relative polymer length

R∗ ≡ |L(t) − Leq|/|L(0) − Leq| as a function of time

t∗ = t/τ with τ = ∆2/(4D). We consider both a fully

compressed (circles) and a fully stretched (squares) initial

condition. Solid lines represent a KWW relaxation law,

exp(t/tR)
β , with β ≈ 3/4 and tR ≈ 1/3 for both initial

conditions. The dashed line is an exponential fit.
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