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Granular mixtures are usually modelled as a mixture

of smooth inelastic hard spheres of masses mi, diame-

ters σi, and coefficients of normal restitution αij (i, j =
1, 2, · · · , s). Here, s means the number of components or

species of the mixture. Since the total kinetic energy of the

mixture decreases in time, in order to maintain the system

in rapid flow conditions an external energy input is needed

to inject energy into the system and compensate for the en-

ergy dissipated by collisions. When both mechanisms can-

cel each other, the system achieves a steady nonequilibrium

state. The injection of energy can be done, for instance, by

vibrating walls or by bulk driving as in air-fluidized beds.

However, given that this way of supplying energy develops

in most cases strong spatial gradients, the theoretical de-

scription of the above situations is quite complex. Thus, to

avoid this problem, it is common in theoretical and compu-

tational works to inject energy into the system by the action

of external driving forces or thermostats. A remarkable ob-

servation is that the transport properties of granular systems

depend not only on the mechanical properties of the grains

but also on the thermostating method. An alternative to the

use of thermostats has been proposed in the last few years:

the so-called ∆-model [1] where the thermostat is a colli-

sional one since energy is injected in every collision. To

be more precise, in a binary collision between particles of

species i and j, apart from the usual terms appearing in the

collision rules, an extra constant velocity ∆ij term is added

to the normal component of the relative velocity of the two

colliding spheres. Thus, in a binary collision, the change

in kinetic energy is constituted by two terms: (i) a dissipa-

tion energy term proportional to 1− α2

ij and (ii) two energy

injection terms with intensity depending on ∆ij . The ∆-

model has been mainly proposed to study dynamic proper-

ties of granular systems confined in quasi-two-dimensional

geometries.

At a kinetic level, the relevant information on the state of

the system is provided by the knowledge of the one-particle

velocity distribution functions fi(r,v; t). For moderate den-

sities and in the absence of external forces, the distributions

fi of the ∆-model verify the set of coupled Enskog kinetic

equations

∂

∂t
fi + v · ∇fi =

s∑

j=1

Jij [fi, fj ], (1)

where Jij is the Enskog collision operator of the ∆-model

[2]. Our main objective here is to solve Eq. (1) by means

of the Chapman–Enskog (CE) method for states with small

spatial gradients. This allow us to determine the Navier–

Stokes transport coefficients of the confined quasi-two-

dimensional granular mixture. Before doing it, as a first step

we analyze the homogeneous state state (HSS). The study

of this state is crucial since its local version is the reference

state in the Chapman–Enskog solution. As expected, our so-

lution shows that the partial temperatures Ti of each species

(measuring its mean kinetic energy) in the HSS are different

and hence, energy equipartition is broken down.
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Fig. 1. Plot of T1/T2 versus α for m1/m2 = σ1/σ2 = 1,

∆22 = λ∆11, and ∆12 = (∆11 +∆22)/2. Here, λ = 2 (a),

λ = 5 (b), and λ = 10 (c). Circles are DSMC results while

triangles refer to MD simulations for a volume fraction φ =
0.01.

As an illustration, Fig. 1 shows T1/T2 as a function of

the (common) coefficient of restitution αij ≡ α for a binary

mixture (s = 2). It is quite apparent that the temperature

ratio is clearly different from 1, showing the lack of energy

equipartition. We also observe a good agreement between

the (approximate) theoretical results (based on the use of

Maxwellian distribution to estimate the partial cooling rates)

and computer simulations.

Once the HSS is characterized, the next step is to solve

Eq. (1) for states near to the HSS. As said before, this solu-

tion can be obtained by the application of the CE method.

Explicit forms for the diffusion transport coefficients, the

shear viscosity coefficient, and the coefficients associated

with the heat flux are explicitly obtained in terms of the pa-

rameter space of the system by assuming steady state condi-

tions and by considering the leading terms in a Sonine poly-

nomial expansion [3]. As an application, the violation of the

Onsager reciprocical relations is quantified.
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