Self-diffusion of spherocylindrical particles flowing under non-uniform shear rate

D. Hernández-Delfin¹, T. Weinhart², and R.C. Hidalgo³

¹BCAM - Basque Center for Applied Mathematics, Mazarredo, 14 E48009 Bilbao, Basque Country, Spain.

²Multiscale Mechanics, Department of Thermal and Fluid Engineering, Faculty of Engineering Technology, MESA+

University of Twente, P.O. Box. 217, 7500 AE Enschede, The Netherlands.

³Departamento de Física y Matemática Aplicada, Universidad de Navarra, P.O. Box. 177, E-31080 Navarra, Spain.

This work numerically studies the self-diffusion of spherocylindrical particles when flowing down an inclined plane. This system is challenging due to particles being nonspherical and because they are subjected to a non-uniform shear rate. We perform simulations for several aspect ratios and inclination angles, tracking the particle trajectories. Using the simulation data, we compute the diffusion coefficients D, and a coarse-graining methodology allowed accessing the shear rate spatial profiles $\dot{\gamma}(z)$. It enables us identifying the spatial regions where the diffusivity fully correlates with the local shear rate $\dot{\gamma}(z)$. Introducing an effective particle size d_{\perp} , we propose a well-reasoned scaling law between D and $\dot{\gamma}$. Our analysis also identifies specific locations where the diffusivity does not correlate with the shear rate. This observation corresponds to zones where $\dot{\gamma}(z)$ has non-linear spatial variation, and the velocity probability density distributions exhibit asymmetric shape. Moreover, examining the velocity correlations, we obtain that the correlation length l_{ξ} is not constant, resulting shorter l_{ξ} values close to the bottom plane and higher l_{ξ} close to the free surface. Although our scaling analysis does not involve the particle correlation length l_{ξ} , our finding suggests that collective movement might play a crucial role in the self-diffusive dynamics.

Fig. 1. a) Trajectories of twenty randomly chosen particles after reaching the steady regime. b) Snapshot of the numerical setup; the red curve indicates the mean value of the *x*-component of the velocity profile along the *z*-direction, $\bar{v}_x(z)$. The figures correspond to the case $\xi = 2.5$ and $\alpha = 31.0$ degrees. The color of the particle quantifies the magnitude of its v_x . Note that gravity has an angle α to the vertical direction, representing a slope with an angle of elevation of α degrees.

Fig. 2. Ratio of diffusion coefficient and shear rate, $D/\dot{\gamma}$, plotted against the square of the characteristic particle length d_{\perp}^2 for all inclinations α and elongations ξ . The red points are the mean values of all $D/\dot{\gamma}$ for each ξ , and the error bars indicate the standard deviation thereof. The black line represents the resultant linear fit. For all ξ values, a representation of the particle is illustrated.

- R. C. Hidalgo, B. Szabó, K. Gillemot, T. Börzsönyi, and T. Weinhart, "Rheological response of nonspherical granular flows down an incline" *Phys. Rev. Fluid.* 3, 074301 (2018)
- [2] D. Hernández-Delfin, T. Weinhart and R.C. Hidalgo "Selfdiffusion of spherocylindrical particles flowing under nonuniform shear rate" submitted to *Soft Matter*, (January 2022)