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In the previous industrial revolution, virtual twins emu-
lating a physical system were considered as the major pro-
tagonists of simulation-based engineering. This type of twin
was usually based on numerical, yet static, models that were
used, often separately and independently, in designing, man-
ufacturing and testing complex systems and their compo-
nents. They were, however, not expected to accommodate
or assimilate data. The reason is that the characteristic time
of standard simulations was, and still is even today, not com-
patible with the real-time responses needed when prediction
are required in-operation, as nowadays needed in the context
of connected systems.

The subsequent generation of twins, called digital twins,
allows real-time decision making by using powerful data an-
alytics, machine learning and artificial intelligence on the
abundant collected data. Thus, predictive and operative
maintenance, and data-based control can be possible. How-
ever, creating a data-based model from scratch is expensive
and sometimes requires too much data that can be difficult or
even impossible to collect. Moreover, in science and engi-
neering decisions and designs must be certified, and for that,
the employed rationale explained, a real issue for nowadays
artificial intelligence based procedures.

Hence, a hybrid paradigm seems more pertinent. Hybrid
twins also include predictions from physics-based models.
However, persistent and biased deviations from the physical
measurements are now interpreted as ignorance about some
hidden physics taking place, and thus provide an opportunity
to learn on-the-fly. Hybrid Twins embrace physics-based
models (that should accommodate real-time queries) and
“deviation data-driven models”, the last intended to fill the
gaps on inherent epistemic ignorance in the physics-based
model.

Thus, the “Hybrid” framework allows combining data and
models, mathematical physics and artificial intelligence. On
the other hand, it allows operating with a more consequent
and reasonable amount of data (within the so-called smart-
data paradigm), because it serves to model the gap more than
creating the models from scratch. Finally, as soon as engi-
neering systems are certified from the physics-based model,
the data-driven model of the deviation (ignorance) serves for
improving prediction, and can be viewed as a bonus or sur-
plus.

Data was present in industry from the very beginning.
However, it has served traditionally for calibrating models
and for validating designs. These data contributed to gen-
erate knowledge enabling the training of experts. Today,
new technologies facilitate massive data acquisition that in
most cases remain without analysis. This is often due to the
lack of appropriate tools for treating that data at the required
rates, or simply to the inadequacy of these techniques for
extracting the hidden knowledge behind data.

Today the industrial reality is large. For example, test-

ing machines used for calibrating material models produce
vast amounts of data (X-tomography, Microscopy, Laser ve-
locimetry, ...) in particular in form of sequence of images
or time-series. On the other hand, production machines pro-
vide, in general, much less data, because in most of cases its
acquisition is very expensive, in some cases technologically
challenging, and often simply impossible.

Thus, the main three factors associated to data collected
in industry concern (i) quantity, (ii) characteristic time of the
response, and (iii) data quality (noise or bias).

Our framework concerns the hybrid paradigm in which
data (within an engineered artificial intelligence framework)
will enrich models exhibiting limited accuracy, and models
should help data to become smarter, by informing what data,
at what scale, where and when it should be collected.

Model enrichment is based on the use of the gap between
measurements and model predictions. The interest of us-
ing a model is twofold; first, it allows moving faster on
a solid foundation, and second, the better are the models,
the smaller are the deviations, implying an almost linear or
slightly nonlinear behavior, both making possible their ap-
proximation from few data, instead of the vast amount of
data needed for creating a model from the scratch.

The hybrid paradigm can be expressed as: Reality = First
order physics-based model, manipulated from the tools of
applied mathematics and computer science PLUS a data-
driven correction learned on-the-fly, based on data manipu-
lated from adequate (engineered) artificial intelligence tech-
niques.

This framework makes it possible operating in both, the
big-data limit as well as in the scarce-data limit, and both
must accommodate with the characteristic time of the indus-
trial process. When data is abundant and we proceed offline,
the use of deep-learning is an excellent candidate. However,
when data is very scarce and the data-driven model must
adapt in time very fast, other techniques able to operate in
those circumstances could and should be considered, ana-
lyzed, developed, improved and tested on real use cases.

In the industrial context, AI has six major axes: (i) vi-
sualizing multidimensional data; (ii) classifying data; (iii)
modeling the input / output relationship enabling quantita-
tive predictions – the art of modeling –; (iv) certifying those
predictions; (v) explaining them, that is, extracting knowl-
edge from the available data, and (vi) apply them in produc-
tion (taking advantage of the online adaptation –hybrid twin
paradigm–) and training final users and students on the use
of AI techniques for adding value to industrial technology.
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